
Optimization of the Particle-In-
Cell code WARP

mlobet@lbl.gov
NERSC
November 3 2016

Mathieu Lobet, Henri vincenti, Remi Lehe, Jean-
Luc Vay, Jack Deslippe

Mathieu Lobet, NERSC, November 2016 - 2

Particle-In-Cell (PIC) methods:
s o l v e k i n e t i c a l l y c o l l e c t i v e
interactions between the matter
(p lasmas) seen as charged
particles and electromagnetic fields

Application domain: plasma physics,
laser-matter interaction, particle
accelerators

WARP: Laser-thin foil interaction and ion acceleration

WARP: Simulation of laser wakefield acceleration of
electrons

WARP: Conventional beam accelerators

Particle-In-Cell code applications

Mathieu Lobet, NERSC, November 2016 - 3

PICSAR (Particle-In-Cell Scalable Application Resource): a high-
performance Fortran/Python Particle-In-Cell library targeting MIC
architectures.

•  designed to be interfaced with the PIC code WARP [2] used at Berkeley
Lab

•  soon released as an open-source project (already available upon
demand)

•  selected code for the NERSC Exascale Science Applications Program [1]
(NESAP) that aims at preparing the arrival of the super-computer CORI
phase II equipped of Intel Xeon Phi KNL.

[1] http://www.nersc.gov/users/computational-systems/cori/nesap/
[2] http://warp.lbl.gov/

The high-performance library PICSAR

The 4 main steps of the Particle-In-Cell
loop

Mathieu Lobet, NERSC, November 2016 - 4

1 3 2

1)  Charge/current deposition*
(Vectorization hotspot)

3) Field gathering*
(Vectorization hotspot)

J, rho

2) Maxwell solver: update
of the field grids

4) Particle pusher

1 1 2

E,B

Time

* Interpolations steps between particle and the grids

Optimization: Tiling (cache blocking) +
OpenMP (shared memory) [1]

Mathieu Lobet, NERSC, November 2016 - 5

MPI domainTile
Portion of the grid

local to the tile

(1,1)

Tile
(3,4)

Tile
(3,1)

§  Tiling: new subdivision into tile inside MPI domains: local field grids + guard
cells from the global grids, local particle property arrays

§  Tile size:
•  field grids can fit in L2 cache (main constraint)
•  Particle arrays can partially or entirely fit in L3 on Haswell

§  Tiles are handled by OpenMP
•  Number of tiles >> number of threads = load balancing between the tiles

Better
memory

locality and
cache reuse.

Global grid of
the MPI domain

Tile
(1,4)

[1] H. Vincenti et al, ArXiv 1061.02056 (2016)

Mathieu Lobet, NERSC, November 2016 - 6

Vectorization bott leneck of the
classical charge/current deposition

!	Charge	deposition	simplified	algorithm	
	
For	each	particle	in	a	tile:	
	
			1)	Determine	nearby	nodes	on	the	charge	grid	
					
			2)	Compute	current/charge	of	the	particle	
	
			3)	Deposit	contributions	to	the	charge	grid	

•  Conditions (if) removed from the inner loop:
order-specific functions

•  Step 1) contains type conversions and
roundings (not good but can be vectorized)

•  Step 2) can be vectorized

•  Step 3) prevents vectorization due to memory

races when 2 particles are in the same cell

•  Grid nodes not aligned in memory: gather/
scatter

Order 1 charge or
current deposition

•  C u r r e n t g r i d s J x (N C E L L S) ,
Jy(NCELLS), Jz(NCELLS)

•  Charge rho(NCELLS)

[1] H. Vincenti et al, ArXiv 1061.02056 (2016)

Vectorization bott leneck of the
classical charge/current deposition

6

8

!	Charge	deposition	optimized	algorithm	
	
DO	i=1,NUMBER_OF_PARTICLES,SIZE_VECT:	
	
				!$OMP	SIMD	
				DO	ip=1,SIZE_VECT:	
									
							1)	Determine	nearby	nodes	on	current	grids	
							and	store	them	for	the	SIZE_VECT	particles	
							2)	Compute	contributions	for	each	node	
	
				DO	ip=1,SIZE_VECT	
	
								!$OMP	SIMD	
								DO	k=1,8	
	
											3)	Add	contributions	in	the	temporary	
											array	structure	Rhocells	
	
Do	ic=1,NUMBER_OF_CELLS	
				4)	Reduction	of	rhocells	in	rho	

Cell icell

Original
Rho structure

5
7

1
2

4 3

New
Rhocells structure

1

8

New dimension for 8
contiguous elements at
icell

Cell icell
•  New dimension in the current and charge array to

access vertices of a cell in a contiguous way

•  Enable vectorization of the deposition with no
memory races, no gather/scatter

•  Reduction at the end in the original structure: Non-
efficient vectorization but in O(Ncells) with Ncells <<
Nparticles

7 [1] H. Vincenti et al, ArXiv 1061.02056 (2016)

Mathieu Lobet, NERSC, November 2016 - 8

Benchmarking and profiling test case

Test case: homogeneous thermalized plasma
Ø  Balanced load: same amount of particles between MPI domains and tiles

On KNL, the entire problem fits in MCDRAM

Systems
NERSC Cori phase 1 node
2 Intel Haswell processors

KNL NERSC white boxes
64 core KNL

SNC4 flat mode*

Configuration 1
(Non optimized) 32 MPI processes 64 MPI processes

Configuration 2
(Optimized)

2 MPI processes, 16
OpenMP threads per

processor

4 MPI processes, 32
OpenMP threads per task

(hyperthreading)

*Similar performance results with Quadrant flat and SNC2 modes

Mathieu Lobet, NERSC, November 2016 - 9

Performance overview on Haswells and
KNL for order 1 interpolation method

•  Kernel: the main PIC loop (code without the initialization and diagnostics)
•  Order 1: order 1 interpolation for the current/charge deposition and the field gathering

•  Order 3: order 3 interpolation for the current/charge deposition and the field gathering
•  Other: particle sorting, Maxwell solver, charge deposition

Mathieu Lobet, NERSC, November 2016 - 10

x1.4 longer

Performance overview on Haswells and
KNL for order 1 interpolation method

•  Without optimization: simulation time 1.4 longer on KNL

Mathieu Lobet, NERSC, November 2016 - 11

2.4 speedup
3.7 speedup

Performance overview on Haswells and
KNL for order 1 interpolation method

•  Without optimization: simulation time 1.4 longer on KNL
•  With optimizations: x2.4 speedup on Haswell and x3.7 on KNL

Performance overview on Haswells and
KNL for order 1 interpolation method

x1.1 faster

•  Without optimization: simulation time 1.4 longer on KNL
•  With optimizations: x2.4 speedup on Haswell and x3.7 on KNL
•  With optimizations: simulation time x1.1 faster on KNL at order 1 versus Haswell

Performance overview on Haswells and
KNL for order 1 interpolation method

x1.1 faster

•  Without optimization: simulation time 1.4 longer on KNL
•  With optimizations: x2.4 speedup on Haswell and x3.7 on KNL
•  With optimizations: simulation time x1.1 faster on KNL at order 1 versus Haswell
Ø  Implemented optimizations essential on KNL to reach Haswell performance
Ø  Implemented optimizations also speedup previous architectures (Haswell and Ivybridge)

Thank You

Mathieu Lobet, NERSC, November 2016 - 14

